Cerebral autoregulation and gas exchange studied using a human cardiopulmonary model.

نویسندگان

  • K Lu
  • J W Clark
  • F H Ghorbel
  • C S Robertson
  • D L Ware
  • J B Zwischenberger
  • A Bidani
چکیده

The goal of this work is to study the cerebral autoregulation, brain gas exchange, and their interaction by means of a mathematical model. We have previously developed a model of the human cardiopulmonary (CP) system, which included the whole body circulatory system, lung and peripheral tissue gas exchange, and the central nervous system control of arterial pressure and ventilation. In this study, we added a more detailed description of cerebral circulation, cerebrospinal fluid (CSF) dynamics, brain gas exchange, and cerebral blood flow (CBF) autoregulation. Two CBF regulatory mechanisms are included: autoregulation and CO(2) reactivity. Central chemoreceptor control of ventilation is also included. We first established nominal operating conditions for the cerebral model in an open-loop configuration using data generated by the CP model as inputs. The cerebral model was then integrated into the larger CP model to form a new integrated CP model, which was subsequently used to study cerebral hemodynamic and gas exchange responses to test protocols commonly used in the assessment of CBF autoregulation (e.g., carotid artery compression and the thigh-cuff deflation test). The model can closely mimic the experimental findings and provide biophysically based insights into the dynamics of cerebral autoregulation and brain tissue gas exchange as well as the mechanisms of their interaction during test protocols, which are aimed at assessing the degree of autoregulation. With further refinement, our CP model may be used on measured data associated with the clinical evaluation of the cerebral autoregulation and brain oxygenation in patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monitoring cerebral blood flow pressure autoregulation in pediatric patients during cardiac surgery.

BACKGROUND AND PURPOSE The limits of cerebral blood flow-pressure autoregulation have not been adequately defined for pediatric patients. Mean arterial blood pressure below these limits might contribute to brain injury during cardiac surgery. The purpose of this pilot study was to assess a novel method of determining the lower limits of pressure autoregulation in pediatric patients supported wi...

متن کامل

Preservation of static and dynamic cerebral autoregulation after mild hypothermic cardiopulmonary bypass.

BACKGROUND Dysfunction of cerebral autoregulation might contribute to neurological morbidity after cardiac surgery. In this study, our aim was to assess the preservation of cerebral autoregulation after cardiac surgery involving cardiopulmonary bypass (CPB). METHODS Dynamic and static components of cerebral autoregulation were evaluated in 12 patients undergoing coronary artery bypass graft s...

متن کامل

Real-time continuous monitoring of cerebral blood flow autoregulation using near-infrared spectroscopy in patients undergoing cardiopulmonary bypass.

BACKGROUND AND PURPOSE Individualizing mean arterial blood pressure targets to a patient's cerebral blood flow autoregulatory range might prevent brain ischemia for patients undergoing cardiopulmonary bypass (CPB). This study compares the accuracy of real-time cerebral blood flow autoregulation monitoring using near-infrared spectroscopy with that of transcranial Doppler. METHODS Sixty adult ...

متن کامل

Effect of apolipoprotein E genotype on cerebral autoregulation during cardiopulmonary bypass.

BACKGROUND AND PURPOSE The presence of the apolipoprotein E epsilon4 (apoE4) allele has been associated with cognitive decline after cardiac surgery. We compared autoregulation of cerebral blood flow (CBF), cerebral metabolic rate for oxygen (CMRO(2)), and arterial-venous oxygen content difference [C(A-V)O(2)], during cardiopulmonary bypass (CPB) in patients with and without the apoE4 allele to...

متن کامل

Risks for impaired cerebral autoregulation during cardiopulmonary bypass and postoperative stroke.

BACKGROUND Impaired cerebral autoregulation may predispose patients to cerebral hypoperfusion during cardiopulmonary bypass (CPB). The purpose of this study was to identify risk factors for impaired autoregulation during coronary artery bypass graft, valve surgery with CPB, or both and to evaluate whether near-infrared spectroscopy (NIRS) autoregulation monitoring could be used to identify this...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 286 2  شماره 

صفحات  -

تاریخ انتشار 2004